標準文獻檢索渠道(國內(nèi)的標準文獻檢索的主要途徑不包括( )) 魔獸世界海加爾山之戰(zhàn)現(xiàn)在的入口在哪?(魔獸世界海加爾山在哪里) 撻伐的意思(撻伐) 網(wǎng)易企業(yè)郵箱客戶端設(shè)置:[1]POP設(shè)置 Win7(網(wǎng)易郵箱pop服務(wù)器設(shè)置) 手機進水怎么處理最好?(手機進水怎么處理最好用) 價外稅名詞解釋(價外稅) 爺爺?shù)臓敔數(shù)陌职衷趺唇?爺爺?shù)臓敔數(shù)陌职衷趺唇械? 融商環(huán)球平臺PC端MT5怎么安裝與登錄(融商環(huán)球MT5) 重慶市體彩中心服務(wù)大廳怎么樣(重慶市體彩中心) 怎么做涼拌萵筍絲(怎么做涼拌萵筍絲視頻) 易烊千璽TFBOYS同款手鏈(易烊千璽項鏈同款) 如何去掉磁盤被寫保護?(怎么去掉磁盤被寫保護) 圈養(yǎng)羊怎么養(yǎng)#校園分享#(圈養(yǎng)羊怎么養(yǎng)視頻) 制訂和制定有什么區(qū)別呢(制訂和制定有什么區(qū)別) 胃疼怎么辦 胃疼怎樣快速止疼(胃一直疼怎么快速止疼) 動力臂和阻力臂的畫法(動力臂) 《小小部隊》攻略:打開任務(wù)地圖(小兵經(jīng)驗區(qū)) 打女友犯法嗎(打女友屁股) 電話會議怎么開(電視電話會議怎么開) 家裝水電改造方法(家裝水電改造方法和步驟) 迪拜首富李凡(迪拜首富) 空調(diào)怎么改成井水空調(diào)(空調(diào)怎么改成井水空調(diào)制熱) dnf創(chuàng)世之書4-4怎么過(DNF創(chuàng)世之書4-4怎么過最新) 赤井秀一喜歡安室透(赤井秀一喜歡誰) 如何去掉開機需要按Ctrl+Alt+Del?(怎樣去掉開機啟動項) 小核桃的功效與作用(小核桃的功效與作用及禁忌) 陶瓷地磚規(guī)格(地磚規(guī)格) 冒險島2狂戰(zhàn)士加點攻略(冒險島2狂戰(zhàn)士加點攻略2020) 終日乾乾與時偕行的意思(終日乾乾與時偕行) iPhone自動切換壁紙怎么開啟(蘋果怎么自動切換壁紙) 元始天尊徒弟(元始天尊的徒弟排名) 深入太極八卦《武神》江湖第一道學(xué)副本(江湖風云錄九陰真經(jīng),北冥神功) 女媧是怎么來到人世的(女媧是怎么死的) 如何把FLV轉(zhuǎn)換成RMVB(怎么轉(zhuǎn)換成flv) word文件擴展名是什么(word的文件擴展名是什么) 南京審計學(xué)院就業(yè)前景(南京審計學(xué)院) 韓式一字眉修飾技巧(韓式一字眉修飾技巧圖片) 微信小游戲猜歌達人451-500關(guān)答案 騎行圈大神(騎行圈論壇) 中年人如何補鈣(中年人如何補鈣維生素AD膠丸) AKG K3003 評測(akgk3003評測視頻) 邊坡比是什么意思(邊坡比) 忍不住虐狗怎么辦?(忍不住虐狗怎么辦知乎) 靈魂潮汐黃昏暮會瑪蒙BOSS打法攻略(靈魂潮汐活動瑪蒙) 手動檔換擋技巧(手動檔) 儀表保護箱如何分類及應(yīng)用(儀表保護箱如何分類及應(yīng)用圖片) 羊角梳子和牛角梳子哪個更好(銀梳子和牛角梳哪個好) 進出口貿(mào)易怎么做(外貿(mào)出口流程) kingsoft是什么意思可以刪除嗎(kingsoft可以刪除) 淘寶試用攻略(淘寶試用攻略在哪里看)
您的位置:首頁 >綜合知識 >

什么是因式分解法舉例子(什么是因式)

導(dǎo)讀 關(guān)于什么是因式分解法舉例子,什么是因式這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!1、概念:

關(guān)于什么是因式分解法舉例子,什么是因式這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!

1、概念:因式是指多項式被另一多項式整除,后者即是前者的因式,如果多項式 f(x) 能夠被整式?g(x) 整除,即可以找出一個多項式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一個因式。

2、當然,這時 q(x) 也是 f(x) 的一個因式,并且 q(x) 、g(x) 的次數(shù)都不會大于 f(x) 的次數(shù)。

3、分解因式:定義把一個多項式化成幾個整式乘積的形式,這種變形叫做分解因式,又叫做因式分解。

4、常用的公式有:a^2-b^2=(a+b)(a-b)(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2a^3+b^3=(a+b)(a^2-ab+b^2).a^3-b^3=(a-b)(a^2+ab+b^2).分解因式的方法:⑴提公因式法①公因式:各項都含有的公共的因式叫做這個多項式各項的公因式。

5、②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.。

6、am+bm+cm=m(a+b+c)③具體方法:當各項系數(shù)都是整數(shù)時,公因式的系數(shù)應(yīng)取各項系數(shù)的最大公約數(shù);字母取各項的相同的字母,而且各字母的指數(shù)取次數(shù)最低的. 如果多項式的第一項是負的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)是正的.⑵公式法①平方差公式:. a^2-b^2=(a+b)(a-b)②完全平方公式: a^2±2ab+b^2=(a±b)^2※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(shù)(或式)的平方和的形式,另一項是這兩個數(shù)(或式)的積的2倍。

7、③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2)。

8、立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2)。

9、④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m為奇數(shù))⑶分組分解法分組分解法:把一個多項式分組后,再進行分解因式的方法。

10、分組分解法必須有明確目的,即分組后,可以直接提公因式或運用公式。

11、⑷拆項、補項法拆項、補項法:把多項式的某一項拆開或填補上互為相反數(shù)的兩項(或幾項),使原式適合于提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形。

12、⑸十字相乘法①x^2+(p+q)x+pq型的式子的因式分解這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和。

13、因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)②kx^2+mx+n型的式子的因式分解如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那么kx^2+mx+n=(ax+b)(cx+d).a(chǎn) -----/b ac=k bd=nc /-----d ad+bc=m※ 多項式因式分解的一般步驟:①如果多項式的各項有公因式,那么先提公因式;②如果各項沒有公因式,那么可嘗試運用公式、十字相乘法來分解;③如果用上述方法不能分解,那么可以嘗試用分組、拆項、補項法來分解;④分解因式,必須進行到每一個多項式因式都不能再分解為止。

14、⑹應(yīng)用因式定理如果f(a)=0,則f(x)必含有因式(x-a)。

15、如f(x)=x^2+5x+6,f(-2)=0,則可確定(x+2)是x^2+5x+6的一個因式。

本文分享完畢,希望對大家有所幫助。

標簽:

免責聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!

最新文章