關(guān)于余弦函數(shù)圖像,余弦這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、余弦定理 開放分類: 數(shù)學(xué)、三角形、幾何 余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當(dāng)移于其它知識,則使用起來更為方便、靈活.對于任意三角形 三邊為a,b,c 三角為A,B,C 滿足性質(zhì)a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosBc^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc 證明:∵a=b-c ∴a^2=(b-c)^2 (證明中前面所寫的a,b,c皆為向量,^2為平方)拆開即a^2=b^2+c^2-2bc再拆開,得a^2=b^2+c^2-2*b*c*CosA同理可證其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是將CosA移到右邊表示一下。
2、---------------------------------------------------------------------------------------------------------------平面幾何證法:在任意△ABC中做AD⊥BC.∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根據(jù)勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac從余弦定理和余弦函數(shù)的性質(zhì)可以看出,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角一定是直角,如果小于第三邊的平方,那么第三邊所對的角是鈍角,如果大于第三邊,那么第三邊所對的角是銳角.即,利用余弦定理,可以判斷三角形形狀。
3、同時,還可以用余弦定理求三角形邊長取值范圍。
4、注:a^2;b^2;c^2就是a的2次方;b的2次方;c的2次方。
本文分享完畢,希望對大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!